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Abstract

Quadratic classifier with modified quadratic discriminant function (MQDF) has been successfully applied to recognition of handwritten
characters to achieve very good performance. However, for large category classification problem such as Chinese character recognition, the
storage of the parameters for the MQDF classifier is usually too large to make it practical to be embedded in the memory limited hand-held
devices. In this paper, we aim at building a compact and high accuracy MQDF classifier for these embedded systems. A method by combining
linear discriminant analysis and subspace distribution sharing is proposed to greatly compress the storage of the MQDF classifier from 76.4 to
2.06 MB, while the recognition accuracy still remains above 97%, with only 0.88% accuracy loss. Furthermore, a two-level minimum distance
classifier is employed to accelerate the recognition process. Fast recognition speed and compact dictionary size make the high accuracy quadratic
classifier become practical for hand-held devices.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The emergence of personal hand-held devices, such as PDAs
(personal digital assistants), Pocket PCs and mobile phones,
with considerable computing power and touch panels, made
the handwriting recognition technology widely used for their
limited size of keyboards. These applications attract many re-
searchers to embed the existing popular recognition approaches
for handwritten characters into these hand-held devices. During
the last decade, the statistical approaches have been widely de-
veloped and applied to handwritten character recognition. They
became the most popular methods in the literature for their sim-
plicity and robustness [1]. Among them, the modified quadratic
discriminant function (MQDF) [2] based on Bayesian decision
rule has been extremely successful and makes the very impor-
tant part of the reported high accuracy classifiers [3–6]. With
the power of such kind of quadratic classifier, the recognition
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accuracy reaches above 99% for handwritten digits and Kanji
characters and above 98% for handwritten Chinese characters
[4,5].

However, in real applications for hand-held devices, like
other high accuracy classifiers such as neural classifier and sup-
port vector machine (SVM), the MQDF classifier also has a
parameter complexity problem for large character set recogni-
tion. Take the work reported in Ref. [4] as an example, the pa-
rameters of the MQDF classifier need more than 140 M bytes
of storage assuming 4-byte floating point number is used for
each parameter. As the memory size of the hand-held devices
is usually limited nowadays, it is not practical to embed the
MQDF classifier directly into these devices. Thus at present,
most applications for embedded systems usually employ sim-
pler classifiers such as minimum distance classifier for limited
storage consideration [7].

In order to embed the high accuracy MQDF classifier into
the memory limited devices, compressing methods for reduc-
ing the parameter size are necessary. Although classifier error
is usually the main concern in publications, in this paper, we
suggest that the tradeoff between classifier’s parameter size and
error rate also be an important characteristic. Larger memory
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size directly causes the increase of products’ cost. So in real
world applications, different products with different memory
size are designed for different markets. By seeking for an op-
timal tradeoff, we can customize the classifier for different sit-
uations to reach the best performance.

In previous works, de Ridder et al. [8] noticed the trade-
off between classifier error and evaluation complexity and pro-
posed a simple economic model. The tradeoff can be then
used to judge the necessity of increasing evaluation complexity
for decreased classification error. The error–complexity curves
were discussed for any classification problem. They mainly
concerned about the computational complexity and the pro-
posed method was based on prototype selection and feature
extraction or dimension reduction by certain approaches such
as principal component analysis (PCA). Nevertheless, there ex-
ist other methods such as cascaded classifiers to reduce the
computational complexity. For example, the MQDF classifier
was used to classify only the first 20 candidates selected by
a simple minimum distance pre-classifier [4]. This kind of
methods can heavily reduce the computational complexity for
large character set recognition and is usually used in compu-
tational expensive classifiers such as SVM [9]. However, the
storage of parameters cannot be reduced by such kind of tech-
niques. Therefore, to our concern, the tradeoff between pa-
rameter size and classifier error becomes more important in
practice.

Liu et al. [7] proposed a method of building compact classi-
fier for large character set printed character recognition. They
used the linear discriminant analysis (LDA) which is also
known as Fisher discriminant analysis (FDA) to reduce the
feature dimensionality and converted the 4-byte floating point
parameters into 1 byte to form the final compact dictionary.
But the converting technique is not discussed. Moreover, by
using such kind of method for compressing MQDF classifier,
the storage size of the parameters is not small enough for most
memory limited embedded systems.

In this paper, we aim at building a compact and high accu-
racy MQDF classifier for memory limited hand-held devices.
By using LDA for dimension reduction, the tradeoff between
parameter size and classifier error is found to be improved.
In order to further compress the parameters to reach a better
tradeoff, a kind of vector quantization (VQ) technique is em-
ployed. We first split the original parameter’s dimension to map
the parameter space into multiple subspaces. Then we try to
find a uniform statistical model to fit the distributions of the
subspaces. By sharing the distribution of multiple subspaces
of the parameters, the dictionary of the MQDF classifier can
be greatly compressed with a slight recognition accuracy loss.
Some preliminary results of this work were reported in Ref.
[10]. Similar technique called split VQ is originally developed
in the field of automatic speech recognition (ASR) [11,12] and
also has been successfully used in compressing model parame-
ters in the field of optical character recognition (OCR) [13,14]
and handwriting recognition [15]. Ge and Huo described their
split VQ method in detail for compressing model parameters of
continuous-density hidden Markov model (CDHMM) in hand-
written Chinese character recognition [16]. From the experi-

mental results in Section 5, it is shown that even by using a
shared distribution model for all subspaces of the parameters,
the recognition accuracy only decreased by less than 0.2% for
handwritten Chinese characters. This is why we choose the
shared distribution model other than the model in original split
VQ. A two-level minimum distance classifier is employed for
coarse recognition to accelerate the recognition process. The
fast recognition speed (1.8 ms/char for PC and 64 ms/char for
Pocket PC) and compact dictionary size (2.06 MB) make the
high accuracy MQDF classifier become practical for memory
limited hand-held devices such as PDAs, mobile phones and
Pocket PCs.

The rest of this paper is organized as follows. Section 2
describes the experiment database and the underlying feature
extraction method. Section 3 reviews the MQDF classifier. In
Section 4, we present our modeling techniques for building a
compact MQDF classifier for large character set recognition.
The experimental results on recognition of handwritten Chi-
nese characters are shown in Section 5. Finally, we draw our
conclusions in Section 6.

2. Database and feature extraction

In order to evaluate the performance of our classifier, the
HCL2000 database [17], which is also used in Ref. [4], is used
in this paper for training and testing. It is collected by Bei-
jing University of Posts and Telecommunications for China
863 project and includes 3755 frequently used Chinese char-
acters in GB2312-80 level 1 character set. For each Chinese
character, 1000 samples written by 1000 different writers were
collected in the database. In total, 3,755,000 handwritten Chi-
nese character samples are included. A part of samples of
the first Chinese character in the database is demonstrated
in Fig. 1.

Each character sample in the HCL2000 database is a binary
image of size 64 × 64, which was obtained by linear normal-
ization on the original segmented handwritten character sam-
ple. We first apply an 8 × 8 global elastic meshing method
[18] to partition the binary image into 8 × 8 meshes according
to the image pixel projection onto the horizontal and vertical
directions. Then the 8-directional gradient features [4,19] are
extracted at each image pixel. For each sample point at the cen-
ter of each mesh, an 8-dimensional vector is obtained from the
8-directional gradient features by passing a 20 × 20 Gaussian
filter on the sample point. Thus, in total, 512 dimensional fea-
ture vectors are extracted for each character image. As the dis-
tribution of the features is like that of the directional elemental
feature (DEF), we also performed the square root for each fea-
ture element to make the distribution of features Gaussian-like
[20].

3. MQDF classifier

Based on Bayesian decision rule, which classifies the input
pattern to the class of maximum a posteriori (MAP) probability
out of classes, the quadratic discriminant function (QDF) is
obtained under the assumption of multivariate Gaussian density
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Fig. 1. Some samples of the first Chinese character in the HCL2000 database.
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Fig. 2. The top-view of a typical eigenvector matrix’s surface, which is
obtained from a class’s covariance matrix after LDA.

for each class. The MQDF proposed by Kimura et al. [2] makes
a modification to the QDF by K–L transform and smoothing
the minor eigenvalues to improve the computation efficiency
and classification performance. We review it here.

According to the Bayes rule, the a posteriori probability is
computed by

P(�i |x) = P(�i )p(x|�i )

p(x)
, i = 1, . . . , M (1)

where M is the number of classes, P(�i ) is the a priori prob-
ability of class �i , p(x|�i ) is the class probability density
function and p(x) is the mixture density function. As p(x) is
independent of class, the nominator of (1) can be used as the
discriminant function for classification:

g(x, �i ) = P(�i )p(x|�i ) (2)

Assume the probability density function of each class is mul-
tivariate Gaussian:

p(x|�i ) = 1

(2�)
D
2 |�i | 1

2

exp

[
− (x − �i )

T∑−1
i (x − �i )

2

]
(3)

where �i and �i denote the mean vector and the covariance
matrix of class �i , respectively, D is the dimension of �i . In-
serting Eq. (3) into Eq. (2), taking the negative logarithm and
omitting the common terms under equal a priori probabilities,
the QDF is obtained:

g0(x, �i ) = (x − �i )
T

−1∑
i

(x − �i ) + log |�i | (4)

The QDF can be used as a distance metric in the sense
that the class of minimum distance is assigned to the input
pattern.

By K–L transform, the covariance matrix can be diagonalized
as

�i = �i�i�
T
i (5)

where � = diag[�i1, . . . , �iD] with �ij , j = 1, . . . , D, be-
ing the eigenvalues (ordered in decreasing order) of �i and
�i = [	i1, . . . ,	iD] with 	ij , j = 1, . . . , D, being the ordered
eigenvectors. �i is orthonormal (unitary) such that �T

i �i = I .
According to Eq. (5), the QDF can be rewritten in the form

of eigenvectors and eigenvalues:

g0(x, �i ) = [�T
i (x − �i )]T�−1

i �T
i (x − �i ) + log |�i |

=
D∑

j=1

1

�ij

[	T
ij (x − �i )]2 +

D∑
j=1

log �ij (6)
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Fig. 3. Block diagram of the recognition system using the compact MQDF classifier.

By replacing the minor eigenvalues with a constant 
i , the
MQDF is obtained as

g1(x, �i ) =
K∑

j=1

1

�ij

[	T
ij (x − �i )]2

+
D∑

j=K+1

1


i

[	T
ij (x − �i )]2 +

K∑
j=1

log �ij

+ (D − K) log 
i

= 1


i

⎧⎨
⎩‖x − �i‖2 −

K∑
j=1

(
1 − 
i

�ij

)
[	T

ij (x − �i )]2

⎫⎬
⎭

+
K∑

j=1

log �ij + (D − K) log 
i (7)

where K denotes the number of dominant eigenvectors. The
above utilizes the invariance of Euclidean distance:

dE(x, �i ) = ‖x − �i‖2 =
D∑

j=1

[	T
ij (x − �i )]2 (8)

Since the training of the QDF classifier always underesti-
mate the patterns’ eigenvalues by limited sample set, the minor
eigenvalues become some kind of unstable noises and affect
the classifier’s robustness. By smoothing them in the MQDF
classifier, not only the classification performance is improved,
but also the computation time and storage for the parameters
are saved.

The parameter 
i can be set to a class-independent constant
as proposed by Kimura et al. [2] or a class-dependent constant
calculated by the average of minor eigenvalues [21]. We set it to
a class-independent constant and optimize its value by holdout
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Fig. 4. A hypothesis of tradeoff curves between parameter size and recognition
accuracy.

cross validation on the training data set. In practice, we found
the performance is superior when setting the constant class-
independent rather than class-dependent. The same result was
also found in Ref. [22].

4. Building compact MQDF classifier

From the introduction of MQDF classifier in Section 3, we
can see that, for each class, the classifier needs to train and
store the parameters such as the mean vectors �i , the dom-
inant eigenvalues �i and eigenvectors �i of the covariance
matrix �i . The parameter size of �i , �i and �i is D, K and
K × D respectively. The storage problem mainly comes from



2920 T. Long, L. Jin / Pattern Recognition 41 (2008) 2916–2925

Table 1
Recognition accuracy (%) on different K and DL

DL Dominant eigenvector number K

2 4 6 8 10 12 16 25 32 48 64

80 95.96 96.57 96.85 96.99 97.06 97.12 97.15 97.17 97.19 97.19 97.16
96 96.02 96.67 96.99 97.15 97.25 97.32 97.39 97.47 97.50 97.49 97.44
128 96.06 96.75 97.10 97.31 97.44 97.53 97.63 97.79 97.83 97.84 97.75
160 96.05 96.76 97.13 97.36 97.49 97.60 97.73 97.91 97.97 97.97 97.85
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Fig. 5. The optimal tradeoff curve between parameter size and recognition
accuracy by choosing different K and DL.
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Fig. 6. The tradeoff curves with dimension reduction by choosing different
DL and without dimension reduction for eigenvectors.

the eigenvectors �i of each class because K is less than D
and usually larger than 10. Typically, the storage of the eigen-
vectors �i (i = 1, . . . , M) is 4 × D × K × M bytes when 4-
byte floating point number is used. This requires about 293 MB
storage space under a system setup of D = 512, K = 40,
M = 3755.

In practice, before using MQDF, the feature vector’s dimen-
sion D is usually compressed by LDA [4]. With the help of
LDA, not only the parameter size and computation time are
saved, but also the classifier’s accuracy is improved. After di-
mension reduction from 512 to 160 by LDA, a typical eigen-
vector matrix of a class’s covariance matrix is shown in Fig. 2.
By choosing K = 40, the matrix can be reduced to the parame-
ters in the dash line rectangle. When changing the parameter K,
a tradeoff curve between classifier error and parameter size can
be drawn by experiments. Meanwhile, by observation, the lat-
ter elements in the dominant eigenvectors are much smoother
than the former elements. This provides us another way to fur-
ther reduce the dominant eigenvectors by using only the former
DL (DL < D) elements in each eigenvector, which is shown in
the bold line rectangle in Fig. 2. The latter elements in each
eigenvector can be then substituted by their mean value.

In order to further compress the dominant eigenvectors of
each class, a kind of VQ technique is used in our classifier’s
design. We first split the original parameter’s dimension to map
the parameter space into multiple subspaces. For each class �i ,
the dominant eigenvector matrix �K

i =[	i1, . . . ,	iK ] with 	ij

(j =1, . . . , K) is partitioned into subspace eigenvector matrix,
i.e. each D-dimensional eigenvector 	ij is equally partitioned

into Q DQ-dimensional sub-vectors 	1
ij , 	

2
ij , . . . ,	

Q
ij , where

D = DQ × Q.
Then we try to find a general statistical model to fit the dis-

tributions of all the sub-vectors. By using LBG clustering algo-
rithm [23] in the subspaces of the parameters, the sub-vectors
	q

ij (i = 1, . . . , M, j = 1, . . . , K, q = 1, . . . , Q) are clustered
into a small set of L prototypes. Each original subspace eigen-
vector is then presented by its nearest prototype. When the L
is smaller than 2r , where r is the number of bits for storing
one DQ-dimensional sub-vector, the storage of the eigenvector
matrix of each class can be compressed.

The building process of the prototype set is similar to the
split-dimension VQ for speech signals [12]. Typically, the
smaller quantization error reached by the clustering process,
the closer approximation obtained for the original sub-vectors.
This can be ensured by using more prototypes. However, there
is a tradeoff between the prototype size and the classifier error.
By changing different parameter Q and L, the tradeoff curve
can be drawn from experimental results.

After the clustering process is completed, the prototypes
are clustered to approximate the distribution of the subspace
eigenvectors. The dictionary for the eigenvector matrices of all
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Table 2
Recognition accuracy (%) on different K and DLwhen DQ = 1, L = 256

DL Dominant eigenvector number K

2 4 6 8 10 12 16 25 32 48 64

96 96.04 96.68 97.00 97.17 97.24 97.32 97.38 97.45 97.48 97.49 97.43
128 96.09 96.78 97.15 97.35 97.43 97.53 97.62 97.78 97.82 97.83 97.74
160 96.09 96.82 97.18 97.35 97.49 97.60 97.73 97.90 97.96 97.96 97.85
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Fig. 7. The tradeoff curves of the original parameters and the compressed
parameters by DQ = 1, L = 256.

classes consists of two parts, the indices of the prototypes and
the codebook. The storage size is computed as follows:

size(�) = log L

8 × DQ

× DL × K × M + DQ × L × 4 (9)

Fig. 3 demonstrates both the block diagram of our recogni-
tion system and the mapping relationship in the compact dic-
tionary. The input character is first transformed to a binary im-
age and normalized to size 64 × 64 by linear normalization.
After the feature extraction which was described in Section 2,
the dimension of the feature vector is reduced by LDA. Then
a two-level minimum distance coarse classifier is designed for
the purpose of speeding up the recognition process. The first-
level coarse classifier uses first 16 dominant LDA features
for classification and generates about 300 candidates for the
second level coarse classifier. The second level coarse classi-
fier uses 160 dominant LDA features and generates 20 can-
didates for MQDF classifier, which outputs the final recogni-
tion result. In the training stage, the training handwritten sam-
ples also performed the same feature extraction and dimen-
sion reduction by LDA. The MQDF parameters are then com-
puted and the proposed VQ technique is performed to form the
final compact dictionary. Fig. 3 only shows the mapping re-
lationship of eigenvectors’ indices and codebook in the com-
pact dictionary. Other MQDF parameters, which have similar
mapping relationship in the compact dictionary, are not shown
here.

The same VQ technique can also be applied to other param-
eters such as the mean vectors �i , the dominant eigenvalues
�i , and even the LDA transformation matrix to compress the
final MQDF classifier’s dictionary. Thus, the proposed method
can be a general compressing method for any classifier and the
tradeoff curve can be found to adapt the classifier’s size to more
situations.

In Fig. 4, we give a hypothesis to show how the tradeoff
curve could be. If the VQ can reduce the classifier’s parameter
size to one half, the original tradeoff curve can be lowered
down to the ideal one shown in Fig. 4 without any accuracy
loss. However, VQs with different quantization error lead to
different loss in the classifier’s accuracy. We assume that if at
each point on the curve, the recognition loss is approximately
the same for one kind of quantization, the two tradeoff curves
by good and bad quantizations under this assumption could be
drawn in the figure. From Fig. 4, we can find out that even the
bad quantization may fail to compress the parameters at high
recognition accuracy level, it still may have chance to succeed
at a lower recognition accuracy level. This could be proved by
the experimental results in the next section.

5. Experiments

Experiments were carried out to test the performance
of our compact MQDF classifier on recognition of hand-
written Chinese characters. The recognition accuracies,
parameter–size–accuracy tradeoff curves, error–reject tradeoff
curves and timing analysis of the compact classifier are given
by the experimental results.

5.1. Experimental setup

Both training and testing samples are from the HCL2000
database which has been introduced in Section 2. We use 700
sets (labeled as xx001–xx700) for training and the rest 300 sets
(labeled as hh001–hh300) for testing. The testing platform is
on a PC with Pentium4 2.8 G CPU and 1 G memory.

First, the dimension of each feature vector in mean vector
template is reduced from 512 to 160 by LDA, which not only
improves the classification performance but also arranges the
dominant features for coarse classifier. After LDA, the base-
line minimum distance classifier obtained a recognition rate
of 94.23%. Then we compress all the parameters except the
dominant eigenvectors by subspace distribution clustering and
sharing with DQ = 1, L = 256. All these parameters are then
stored by only 1-byte index, which leads to a basic compact
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Table 3
Recognition accuracy (%) on different K and DL when DQ = 1, L = 16

DL Dominant eigenvector number K

2 4 6 8 10 12 16 25 32 48 64

96 96.01 96.61 96.89 97.03 97.11 97.15 97.20 97.22 97.23 97.23 97.22
128 96.08 96.72 97.04 97.19 97.29 97.36 97.43 97.53 97.56 97.57 97.51
160 96.08 96.76 97.10 97.25 97.37 97.45 97.53 97.67 97.72 97.72 97.62

Table 4
Recognition accuracy (%) on different K and DL when DQ = 2, L = 256

DL Dominant eigenvector number K

2 4 6 8 10 12 16 25 32 48 64

96 96.02 96.64 96.94 97.09 97.17 97.22 97.26 97.31 97.32 97.32 97.29
128 96.09 96.74 97.09 97.27 97.35 97.43 97.50 97.61 97.65 97.65 97.59
160 96.09 96.77 97.15 97.33 97.41 97.50 97.60 97.74 97.80 97.79 97.69

Table 5
Recognition accuracy (%) on different K and DL when DQ = 3, L = 256

DL Dominant eigenvector number K

2 4 6 8 10 12 16 25 32 48 64

96 95.92 96.47 96.71 96.81 96.87 96.90 96.88 96.84 96.84 96.84 96.86
128 96.01 96.61 96.87 97.00 97.06 97.11 97.13 97.14 97.16 97.16 97.16
160 96.04 96.65 96.94 97.09 97.15 97.20 97.24 97.30 97.31 97.31 97.27
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Fig. 8. The tradeoff curves of by choosing different DQ and L.

dictionary whose size is only one fourth compared to the orig-
inal dictionary. The following experiments were all based on
these compressed parameters.

5.2. Speeding up the recognition process

Considering the MQDF is time consuming, a two-level min-
imum distance coarse classifier is employed in the recognition

system. In order to avoid the sorting process for the candi-
dates in the first-level coarse classifier, the distance between
the input character and each prototype is recorded and a his-
togram of the distance distribution is calculated. By accumu-
lating the number of candidates from the lowest distance in the
histogram, a distance threshold is determined to give about 300
candidates by the recorded distances. The second level coarse
classifier uses 160 dominant LDA features and generates 20
candidates for the MQDF classifier. The hit rate of the 20 can-
didates given by the two-level coarse classifier is 99.5%. The
MQDF classifier calculates the MQDF score of the 20 candi-
dates given by the coarse classifiers and gives the recognition
result by choosing the one which has the minimum MQDF
score.

5.3. Original tradeoff curve found by experiment

By choosing different parameter K and DL, the open test
recognition rates of MQDF are listed in Table 1. The recog-
nition rate reaches 97.97% when K = 32 and DL = 160. To
our surprise, the MQDF classifier’s recognition rate remains
above 96% even when K = 2, which is about 1.8% higher
than the conventional minimum distance classifier. In order
to find the optimal tradeoff curve from the results, each point
of different combination of K and DL is plotted in Fig. 5.
From the highest accuracy in Table 1, step by step, the optimal
tradeoff curve can be found by the rule: lower recognition rate
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and smaller parameter size. The tradeoff curve is demonstrated
in Fig. 5.

5.4. Dimension reduction for eigenvectors

To find out whether the dimension reduction for eigenvec-
tors is effective, the both curves without dimension reduction
for eigenvectors and with dimension reduction by choosing dif-
ferent DL are drawn in Fig. 6. It is shown that only after the
recognition accuracy decreases to 97.5%, the dimension reduc-
tion is effective to further compress the parameters. For exam-
ple, by choosing K =4, DL =80, the recognition rate is 0.52%
higher than that of the same size parameters without dimen-
sion reduction (K = 2, DL = 160). Meanwhile, by choosing
different DL, there are more points on the curve which means
the classifier’s size is easier to be customized. Therefore, the
proposed dimension reduction for eigenvectors of each class’s
covariance matrix is effective to optimize the tradeoff between
parameter size and classifier accuracy.

5.5. Comparison between different VQ

To test the performance of the split VQ technique, we first
choose DQ = 1, L = 256. The recognition results are listed in
Table 2. The tradeoff curve is drawn and compared with the
original one in Fig. 7. From the results, it is seen the quanti-
zation is nearly perfect. The parameter size is reduced to one
fourth with almost no accuracy loss. When choosing a small
K less than 8, the accuracy is even improved. The reason may
come from the noise reduction by quantization. By choosing
some other different parameter DQ and L, more experiments
were performed to test the compact MQDF classifier’s perfor-
mance. The experimental results are listed in Tables 3–5. The
tradeoff curves of different split VQ are also compared with
each other in Fig. 8.

According to our hypothesis in Fig. 4, the split VQ with
DQ = 3, L= 256 is a bad quantization. However, its efficiency
is promised at a lower recognition accuracy level such as less
than 97%.

The comparison between the tradeoff curves shown in Fig.
8 indicates that slight compression by split VQ wins at high
recognition accuracy level, while the medium one and the heavy
one wins at medium and low accuracy level, respectively. From
this observation, we can determine which kind of quantization
is suitable for the specific requirement.

To our requirement, the best curve among them is found
by setting DQ = 2, L = 256. Five different parameter settings
are selected to form five different scale compact dictionaries,
which are shown in Table 6. The total dictionary size includes
the size of parameters such as mean vectors, dominant eigen-
values and eigenvectors of covariance matrix, and the LDA
transformation matrix. It is shown that the original dictionary
size can be compressed from 76.4 to 7.9 MB with only 0.23%
accuracy loss. The third compact MQDF classifier listed in the
table is of less size compared with conventional LDA classi-
fier but the recognition accuracy is 2.86% higher, which clearly Ta
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Fig. 9. The error–reject tradeoff curves of the original and compact MQDF
classifier.
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Fig. 10. The tradeoff curves of by choosing different DQ and L based on
the cleaned-up database.

demonstrates the efficiency of our proposed compact MQDF
classifier.

5.6. Performance of the error–reject tradeoff curve

As a density model rather than a discriminant model, the
outlier reject efficiency of MQDF is usually superior to other
kinds of classifiers [24]. We also performed some experiments
to test how the reject–error tradeoff curve will be affected by
the compression of MQDF classifier. The score distance be-
tween the first two candidates is used and the classification
result is rejected if the distance is smaller than a pre-defined
threshold. By choosing different thresholds, the tradeoff curves
are drawn in Fig. 9. It is found that higher reject rate makes the
recognition performance of compact MQDF classifiers closer
to the original classifier. For example, when the reject rate is
about 10%, the recognition accuracy of the original classifier
is 99.62%, and the ones of our compact classifiers listed in the
figure reach 99.59% and 99.42%, with only 0.03% and 0.2%

Table 7
Result of timing analysis

Process time (ms per character)

PC Pocket PC

Feature extraction 0.6 32
Coarse classification 1 25
MQDF classification 0.2 7

Total 1.8 64

loss, despite their accuracy loss is 0.23% and 0.88% without
rejection. Therefore, the compact MQDF classifier is particu-
larly suitable to be used in the recognition with rejection.

5.7. Results on a cleaned-up database

We have noticed that in the HCL2000 database, some labels
and the corresponding images are not consistent. Many dupli-
cated images are also found in the database. A cleaning-up pro-
cess was performed on the original HCL2000 database. After
that, 451,147 (12.01%) duplicated images and 29,075 (0.77%)
mislabeled and heavy noised images were removed. As a re-
sult, there are 3,274,778 images remaining in the cleaned-up
database. The sample number of each character varies from
756 to 902. We took 700 samples of each character for training
and the remaining 646,278 samples for testing (i.e. about 172
samples on average for each character). The experimental re-
sults on tradeoff curves by choosing different VQ are shown in
Fig. 10. From the results, no big difference is found compared
to those on the original HCL2000 database except the recog-
nition rate decreased about 0.3%. In order to keep our work
comparable with others, we did not perform other experiments
again on our cleaned-up database.

5.8. Timing analysis

We implemented the compact MQDF classifiers for both PC
(P4 2.8 G CPU) and Pocket PC (Asus MyPal A730 Pocket
PC). The timing analysis of the compact classifier when DQ =
2, L = 256, K = 8 and DL = 96 is shown in Table 7. The
total recognition time for one Chinese character only consumes
1.8 ms on a PC and 64 ms on a Pocket PC, which promised the
performance for the mainstream hand-held devices.

6. Conclusion

In this paper, we proposed a method for building compact
and high accuracy MQDF classifier. We first reduce the dimen-
sion of vectors by LDA. After that, the original parameter space
is mapped into multiple subspaces by splitting the dimension.
A uniform distribution for the subspaces is then found by the
clustering process. By using a small set of prototypes clus-
tered from the original subspaces to represent the uncompressed
sub-vectors, the storage of the MQDF parameters is greatly
compressed. By seeking for the optimal tradeoff curves be-
tween parameter size and recognition accuracy, some sets of
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parameter settings are discovered to form the optimal compact
dictionary for MQDF parameters. From the experimental re-
sults, the compact MQDF classifier with even a smaller dictio-
nary size, compared to the conventional LDA classifier, raises
the recognition rate from 94.23% to 97.09%. To the best of our
knowledge, no other research has attempted to solve the stor-
age problem of the MQDF classifier for large scale character
set recognition. With the reduced memory requirement of the
compact dictionary and the accelerated coarse classification by
a two-level coarse classifier, the high accuracy MQDF classifier
now becomes practical to be used for the memory limited hand-
held devices such as PDAs, mobile phones and Pocket PCs.
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